新闻组语料库

我们下面要处理的数据集是新闻,这些新闻可以分为不同的新闻组,我们会构造一个分类器来判断某则新闻是属于哪个新闻组的:

比如下面这则新闻是属于rec.motorcycles组的:

注意到这则新闻中还有一些拼写错误(如accesories、ussually等),这对分类器是一个不小的挑战。

这些数据集都来自 http://qwone.com/~jason/20Newsgroups/ (我们使用的是20news-bydate数据集),你也可以从 这里 获得。

这个数据集包含18,846个文档,并将训练集(60%)和测试集放在了不同的目录中,每个子目录都是一个新闻组,目录中的文件即新闻文本。

把不要的东西丢掉!

比如我们要对下面这篇新闻做分类:

让我们看看哪些单词是比较重要的:

(helpful - 重要,not helpful - 不重要)

如果我们将英语中最常用的200个单词剔除掉,这篇新闻就成了这样:

去除掉这些单词后,新闻就只剩下一半大小了。而且,这些单词看上去并不会对分类结果产生影响。H.P. Luhn在他的论文中说“这些组成语法结构的单词是没有意义的,反而会产生很多噪音”。

也就是说,将这些“噪音”单词去除后是会提升分类正确率的。我们将这些单词称为“停词”,有专门的停词表可供使用。去除这些词的理由是:

  1. 能够减少需要处理的数据量;
  2. 这些词的存在会对分类效果产生负面影响。

常用词和停词

虽然像the、a这种单词的确没有意义,但有些常用词如work、write、school等在某些场合下还是有作用的,如果将他们也列进停词表里可能会有问题。

年轻人,那些常用词是不能随便丢弃的!

因此在定制停词表时还是需要做些考虑的。比如要判别阿拉伯语文档是在哪个地区书写的,可以只看文章中最常出现的词(和上面的方式相反)。如果你有兴趣,可以到我的 个人网站 上看看这篇论文。

而在分析聊天记录时,强奸犯会使用更多I、me、you这样的词汇,如果在分析前将这些单词去除了,效果就会变差。

不要盲目地使用停词表!

编写Python代码

首先让我们实现朴素贝叶斯分类器的训练部分。训练集的格式是这样的:

最上层的目录是训练集(20news-bydate-train),其下的子目录代表不同的新闻组(如alt.atheism),子目录中有多个文本文件,即新闻内容。测试集的目录结构也是相同的。因此,分类器的初始化代码要完成以下工作:

  1. 读取停词列表;
  2. 获取训练集中各目录(分类)的名称;
  3. 对于各个分类,调用train方法,统计单词出现的次数;
  4. 计算下面的公式:

from __future__ import print_function
import os, codecs, math

class BayesText:

    def __init__(self, trainingdir, stopwordlist):
        """朴素贝叶斯分类器
        trainingdir 训练集目录,子目录是分类,子目录中包含若干文本
        stopwordlist 停词列表(一行一个)
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        # 将不是目录的元素过滤掉
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            print('    ' + category)
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category)
        # 删除出现次数小于3次的单词
        toDelete = []
        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # 遍历列表时不能删除元素,因此做一个标记
                toDelete.append(word)
        # 删除
        for word in toDelete:
            del self.vocabulary[word]
        # 计算概率
        vocabLength = len(self.vocabulary)
        print("Computing probabilities:")
        for category in self.categories:
            print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                self.prob[category][word] = (float(count + 1)
                                             / denominator)
        print ("DONE TRAINING\n\n")


    def train(self, trainingdir, category):
        """计算分类下各单词出现的次数"""
        currentdir = trainingdir + category
        files = os.listdir(currentdir)
        counts = {}
        total = 0
        for file in files:
            #print(currentdir + '/' + file)
            f = codecs.open(currentdir + '/' + file, 'r', 'iso8859-1')
            for line in f:
                tokens = line.split()
                for token in tokens:
                    # 删除标点符号,并将单词转换为小写
                    token = token.strip('\'".,?:-')
                    token = token.lower()
                    if token != '' and not token in self.stopwords:
                        self.vocabulary.setdefault(token, 0)
                        self.vocabulary[token] += 1
                        counts.setdefault(token, 0)
                        counts[token] += 1
                        total += 1
            f.close()
        return(counts, total)

训练结果存储在一个名为prop的字典里,字典的键是分类,值是另一个字典——键是单词,值是概率。

god这个词在rec.motorcycles新闻组中出现的概率是0.00013,而在soc.religion.christian新闻组中出现的概率是0.00424。

训练阶段的另一个产物是分类列表:

训练结束了,下面让我们开始进行文本分类吧。

请尝试编写一个分类器,达成以下效果:

    def classify(self, filename):
        results = {}
        for category in self.categories:
            results[category] = 0
        f = codecs.open(filename, 'r', 'iso8859-1')
        for line in f:
            tokens = line.split()
            for token in tokens:
                #print(token)
                token = token.strip('\'".,?:-').lower()
                if token in self.vocabulary:
                    for category in self.categories:
                        if self.prob[category][token] == 0:
                            print("%s %s" % (category, token))
                        results[category] += math.log(
                            self.prob[category][token])
        f.close()
        results = list(results.items())
        results.sort(key=lambda tuple: tuple[1], reverse = True)
        # 如果要调试,可以打印出整个列表。
        return results[0][0]

最后我们编写一个函数对测试集中的所有文档进行分类,并计算准确率:

    def testCategory(self, directory, category):
        files = os.listdir(directory)
        total = 0
        correct = 0
        for file in files:
            total += 1
            result = self.classify(directory + file)
            if result == category:
                correct += 1
        return (correct, total)

    def test(self, testdir):
        """测试集的目录结构和训练集相同"""
        categories = os.listdir(testdir)
        # 过滤掉不是目录的元素
        categories = [filename for filename in categories if
                      os.path.isdir(testdir + filename)]
        correct = 0
        total = 0
        for category in categories:
            print(".", end="")
            (catCorrect, catTotal) = self.testCategory(
                testdir + category + '/', category)
            correct += catCorrect
            total += catTotal
        print("\n\nAccuracy is  %f%%  (%i test instances)" %
              ((float(correct) / total) * 100, total))

在不使用停词列表的情况下,这个分类器的效果是:

准确率77.77%,看起来很不错。如果用了停词列表效果会如何呢?

那让我们来测试一下吧!

请自行到网络上查找一些停词列表,并填写以下表格:

我找到了两个停词列表,分别是包含25个词174个词 的列表,结果如下:

看来第二个停词列表能提升2%的效果,你的结果如何?